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ABSTRACT 

Commercial buildings offer vast thermal energy storage capability. Control of building 
heating, ventilation, and air conditioning (HVAC) systems can potentially be used to balance 
variations in renewable generation and load. Specifically, buildings can provide ancillary 
services to the grid by decreasing and increasing consumption with respect to their baseline, 
making them appear as a battery to the power system operator. However, a recent study has 
shown that buildings providing these services tend to consume more energy, resulting in a 
low effective round-trip efficiency. To explore this phenomenon further, experiments were 
conducted on three buildings on the University of Michigan campus.  The buildings were 
chosen to represent a variety in structure, size, and HVAC system layout. They were 
instrumented in early summer of 2017 and baseline power and building automation system 
(BAS) data were collected for several months. The building thermostats were then perturbed 
through predefined patterns emulating ancillary service events, enabling detailed 
investigation of the resulting electrical energy consumption. This paper presents experimental 
results, focusing on the additional energy consumed and effective input/output efficiency. We 
find that the efficiency of building response depends on the magnitude and polarity of the 
temperature setpoint changes. Our results are consistent with past experimental results, but 
inconsistent with past modelling results. This indicates that the models need to be improved 
in order to capture the energy impacts of ancillary service provision by buildings.  
 
Introduction  

The increasing share of renewable energy on the grid presents greater reliability challenges to 
the power system operator. Responding to the stochastic nature of wind and solar power 
production will require new, creative, and efficient solutions. Traditionally, ancillary services 
have been provided by conventional generation resources that ramp up or down to maintain 
the crucial supply-demand balance required to maintain grid frequency. In recent years, there 
has been a significant amount of research done in providing these services using electrical 
loads (Callaway and Hiskens 2015).  

Commercial building HVAC (heating, ventilation, and air conditioning) systems present an 
immense energy-storage resource that could be harnessed to maintain supply-demand balance 
on the grid. Commercial buildings account for roughly 20% of the energy consumed in the 
United States (US Energy Information Administration 2016). Buildings can provide ancillary 
services by increasing and decreasing building power consumption with respect to their 
baselines in response to signals sent from the power system operator (Beil et al. 2015).  

A recent experimental study conducted at Los Alamos National Laboratory (LANL) (Beil et 
al. 2015) showed that when buildings are subjected to power perturbations emulating 
ancillary services, they tend to consume additional energy over their baseline even when the 



ancillary service events are designed to achieve only load shifting (i.e., no net change in 
energy consumption over the event). Specifically, the ancillary service tests designed by Beil 
et al. (2015) first increase/decrease building temperature setpoints (decreasing/increasing 
power consumption) for a fixed length of time and then decrease/increase them 
(increasing/decreasing power consumption) by the same amount for the same length of time. 
The study found that the average effective round-trip efficiency (RTE) of the building was 
only 46%, which is significantly lower than standard storage technologies like redox flow 
batteries (75%), lithium-ion batteries (80%, or higher), and pumped hydro storage (81%) 
(Pacific Northwest National Laboratory 2013).  

Using a physics-based model, the LANL experiments were simulated in Lin et al. (2017) in 
order to understand the cause for the inefficiency. However, the simulation results were not 
universally consistent with the experimental results from Beil et al. (2015). While the 
simulation results predicted an RTE of less than 1 when power is increased above the 
baseline and then subsequently decreased (we call this an Up-Down power variation), it 
predicted an RTE of greater than 1 when power is decreased first below its baseline then 
increased (a Down-Up power variation). The change in energy consumption was attributable 
to a change in average room temperatures. In contrast, the experimental results always 
showed an RTE of less than 1 and showed that the RTE associated with Up-Down power 
variation is higher than the RTE associated with Down-Up power variation. Further 
experimental results were deemed necessary to explore this phenomenon.    

This paper presents results from a series of similar experiments conducted on three campus 
buildings at the University of Michigan. We first describe the experiment setup with a 
detailed description of the campus buildings and metrics used to quantify the efficiency of 
building response to ancillary service tests. We then present the results of the experiments 
and a discussion of the response of each building’s HVAC system, focusing on the difference 
in building response to an Up-Down power variation versus a Down-Up power variation. We 
conclude by emphasizing the need to gather further experimental evidence and develop better 
models that accurately capture the response of the buildings.   

Experimental Setup  

Figure 1 shows the ancillary services events, which are identical to those in Beil et al. (2015). 
During the test window (tw), temperature setpoints are increased and decreased 
symmetrically, where full magnitude (FM) refers to the change in temperature setpoint at the 
midpoint of the event. Increases/decreases in temperature setpoints decrease/increase fan 
power consumption. Specifically, when room temperature setpoints are decreased in a room 
with a controller in cooling mode, the VAV (variable air volume) damper opens to increase 
air flow to the room. This causes a drop in static pressure, and the control system responds by 
increasing the speed of the fan associated with that room’s zone, thereby increasing the fan’s 
power consumption. Similarly, when room temperature setpoints are increased, the VAV 
damper modulates to decrease the air flow, resulting in reduced fan power consumption.  

We refer to the ordering of the power increase and decrease as the polarity of the event. Due 
to a building’s large thermal inertia, room temperatures do not change significantly during an 
ancillary service event. Note that previous studies (Hao et al. 2014) have used direct fan 
power control to vary the power consumption of buildings. In contrast, we use temperature 
setpoint control since temperature setpoints can be readily manipulated within Building 



Automation Systems (BAS). Temperature setpoint adjustment allows us to work with the 
BAS whereas direct manipulation of fan power consumption acts as a disturbance to the 
BAS. The BAS will seek to counteract that disturbance by opening/closing VAV dampers, 
which eventually restores the fan power consumption to its previous value.  

The change in energy consumption with respect to the baseline is estimated for the test 
window and settling window (ts), which comprise the total window (tt =tw+ts). We use a test 
window tw = 1 hour. Beil et al. (2015) used tw = 30 minutes; however, one of the buildings we 
use in our experiments (Weill Hall) did not exhibit clear responses when we attempted tw = 
30 minutes, so we used tw = 1 hour for consistency across campus buildings.  

Beil et al. (2015) defined the RTE as the ratio of the energy consumed by the building below 
its baseline over tt to the energy consumed by the building above its baseline over tt (see Fig. 
3). They found the mean RTE of an Up-Down power variation to be 61% and mean RTE of a 
Down-Up power test to be 34%. Conversely, the simulation work by Lin et al. (2017) found 
the mean RTE of an Up-Down power variation to be 88% and a Down-Up power variation to 
be 109%.   

 
Figure 1. Up-Down (left) and Down-Up (right) power variation resulting from temperature setpoint changes. 

The Buildings   

We conducted experiments on three buildings (shown in Fig. 2 along with their average load 
profiles) on the University of Michigan campus. The buildings vary in terms of size, 
structure, and HVAC system layout as shown in Table 1.  

 

Figure 2. Bob & Betty Beyster Building (BBB) (left), Rackham Building (center), and Weill Hall (right).  



Table 1. Building parameters and testing information.  
 
 Rackham BBB Weill Hall 
Year of construction  1938 2005 2006 
Type Office/Auditorium Classroom/Office Classroom/Office 
Area  157,957 ft2	 104,132 ft2	 97,989 ft2	

2016 Energy Consumption  972 MWh	 3160 MWh	 1030 MWh	
2016 Peak Demand 226 kW 391 kW 352 kW 
Electricity provider Campus combined 

heat & power 
plant 

DTE Energy 
(electric utility) 

Campus combined 
heat & power plant 

HVAC  8 AHUs, 8 supply 
fans, 8 return fans	

3 AHUs, 4 
supply fans, 3 

return fans	

2 AHUs, 2 supply 
fans, 2 return fans	

# of AHU zones controlled 4 1 2 
# of setpoints controlled 109 193 104 
# of fans instrumented 8 (4 supply fans 

and 4 return fans) 
2 (1 supply fan 

and 1 return fan) 
5 (2 supply fans, 2 

return fans, 1 
cooling tower fan) 

Baseline months  
(Unperturbed HVAC 
operation)  

August and 
October 2017 

 July, August, 
and October 

2017 

June, July, August, 
and October 2017  

Test months September 2017 September 2017 September 2017  
Test hours (2 tests per day) 9:00-10:00  

1:00-2:00  
(weekdays) 

18:00-19:00  
21:00-22:00  
(everyday) 

9:00-10:00  
1:00-2:00  

(weekdays) 
 

Measuring Fan Power Consumption 

Each building has multiple air handling units (AHUs), each serving different zones of the 
building. In each building, we controlled the temperature setpoints associated with a subset of 
the zones. We installed current sensors on a single phase of the power lines serving the fans 
associated with the controlled zones. We assume constant power factors and voltages 
(determined using one week of measured voltage and power factor data) and use these values 
to compute the three-phase fan power. Table 2 shows the power and air flow ratings of the 
fans whose power was monitored.    

Table 2. Ratings of the fans that were monitored in each building.     

Building  AHU Power (HP/kW) Air flow (1000 cfm) 
Return Fan Supply Fan Return Fan Supply Fan 

Rackham 2 20/14.9 10/7.5 23.6 20 
4 20/14.9 10/7.5 23 20 
7 30/22.4 15/11.2 24 23 
8 30/22.4 15/11.2 24 23 

BBB 1 60/44.7 20/14.9 36 32.6 

Weill Hall 
(AHU 1 & 2) 

1 100/74.6 40/29.8 45 43.5 
2 100/74.6 40/29.8 45 41.5 

 



We also received minute-resolution data from the BAS of the air flow associated with each 
supply fan and the temperature of one room per AHU zone. Room temperatures were used to 
gauge potential occupational discomfort caused by the tests.  

Efficiency Metrics  

 
Figure 3. Metrics used to quantify the building response efficiency, where Ein and Eout are both defined as 

positive.	

Figure 3 shows the metrics we use to quantify building response efficiency. In addition to the 
RTE, we also define the Additional Energy Consumption (AEC), which is the energy 
consumed by the building above its baseline (Ein) minus the energy consumed by the building 
below its baseline (Eout). For a particular building, a higher AEC indicates lower RTE. The 
AEC during the full window tt is denoted by AEC1, while the AEC during the test window 
(tw) and during the settling window (ts) is denoted by AEC3 and AEC2, respectively. Since we 
design the tests to achieve only load shifting over tw, we would hope AEC3 = 0. However, the 
tests are imperfect, so the metric generally takes a non-zero value, varying from event to 
event. As shown in the figure, our goal was to use a settling window of ts = 1 hour, but due to 
a daily dip in fan power consumption at 11:00 A.M. at Weill Hall and the HVAC switching 
to night-time operation at 11:00 P.M. in the BBB building, the settling window ts for both 
buildings was reduced to 48 minutes. 

Outliers 

We filter out tests that are not sufficiently responsive to temperature setpoint changes. 
A potential reason for these outliers could be low occupancy, which can cause the fan power 
to be unaffected by setpoint changes. Another possible reason is a lack of response from 
VAV boxes that are already operating at their maximum or minimum air flow capacity during 
the testing window. These boxes cannot respond any further to achieve the commanded 
setpoint. We deem a test an outlier if it does not satisfy both of the following two criteria: 

1. During the testing window tw, the response should be sufficiently symmetric. Specifically, 
if Eout > Ein, then Ein should be at least 20% of Eout and if Ein > Eout, then Eout should be at least 
20% of Ein.	

2. During the testing window tw, the response should be sufficiently large. Specifically, 
Eout+Ein should be above a tolerance, which is tuned separately for each building. The tuning 
process is heuristic: we tune the tolerances based on visual inspections of the time series data. 
We use the following tolerances: Weill Hall: 4.5 kWh, Rackham Building: 3 kWh, and BBB: 



1.5 kWh. We investigate the sensitivity of the efficiency metrics to the tolerances in the 
results section. 

Baseline Estimation  

Beil et al. (2015) estimated the baseline by linearly interpolation, with the ends of the linear 
baseline estimate given by fan power data over short time windows just prior to and after the 
ancillary service event. Afshari et al. (2017), used air flow and room temperature data to 
develop algorithms that compute when the building settles back to baseline operation after an 
ancillary service event.  

We follow a similar methodology to Beil et al. (2015). Specifically, we use least squares to fit 
a linear baseline to the fan power data over the 5 minute period just before the event and the 5 
minute period immediately after the settling window. Subtracting the baseline from the 
HVAC power consumption gives the estimated change in power consumption over the full 
window tt.   

Baseline estimates often have significant error (Mathieu et al. 2011). To evaluate the baseline 
error, we test the baseline method on days in which there were no ancillary service events 
(referred to as baseline days). Specifically, we use our baseline method to compute AEC1 at 
the building-specific event times on baseline days in August and October. Since no actual 
tests were conducted on baseline days, an accurate baseline method would result in AEC1 = 
0. Figure 4 shows boxplots of AEC1 for each building.  We use these results to compute 95% 
confidence intervals on mean AEC1 estimates. Since we filter ancillary service event outliers, 
we also filter baseline outliers. Specifically, we remove baseline day AEC1 estimates below 
the 5th percentile and above the 95th percentile. We use the remaining data to calculate the 
bias and standard deviation σ. Because the mean AEC1 is calculated from n events, the 
corresponding standard deviation for mean AEC1 is σ √n. We therefore define the 95% 
confidence interval (CI) for the mean AEC1 as ±1.96 σ √n. The bias and CI for each mean 
AEC1 are presented together with the associated results in the following tables. 

 
Figure 4.  Distribution of AEC1 for baseline days in August and October, for each building. The red line within 

the box shows the median of AEC1 values. The bottom and top edges of the box mark the 25th and 75th 
percentile, respectively. The whiskers extend to the most extreme data points deemed non-outliers. The outliers 

are shown with red pluses. 

 



Results and Discussion   

Bob & Betty Beyster (BBB) Building  

A total of 52 tests were conducted on the BBB Building. Figure 5 shows HVAC power 
consumption and room temperature for three representative events. As seen in the figure, 
there is no significant change in room temperature. Table 3 shows the results for four event 
types (varying in polarity and FM). We conducted 13 tests of each type. The table shows the 
number of non-outliers n used to compute the efficiency metrics. If n < 5, we do not present 
the standard deviation of the metrics.  

 
Figure 5. Three representative events at the BBB Building including HVAC power consumption (left axis) and 

room temperatures (right axis).	

Table 3. Efficiency Metrics for the Bob & Betty Beyster Building  

Event Type 1 2 3 4 
Power Polarity Up-Down Up-Down Down-Up Down-Up 
Full Magnitude (FM) 2˚F 4˚F 2˚F 4˚F 
n, # of non-outliers (outliers) 3 (10) 9 (4) 3 (10) 7 (6) 
RTE: Mean (σ) 1.16 (N/A) 0.79 (0.20) 2.46 (N/A) 0.47 (0.12) 
AEC1 
(kWh) 

Mean (σ) -0.098 (N/A) 0.47 (0.47) -0.86 (N/A) 0.99 (0.45) 
Bias ±95% CI -0.13±0.35 -0.13±0.20 -0.13±0.35 -0.13±0.22 

AEC2 (kWh): Mean (σ)  -0.34 (N/A) -0.58 (0.07) -0.11 (N/A) 0.50 (0.16) 
AEC3 (kWh): Mean (σ)  0.24 (N/A) 1.05 (0.44) -0.75 (N/A) 0.50 (0.31) 
 
First, we compare Event Types 2 and 4, for which FM = 4 ˚F. Up-Down power variation 
(Event Type 2) averaged a higher RTE (79%) than Down-Up power variation (Event Type 
4), which averaged 47%. This is consistent with the results from Beil et al. (2015). The 
increased efficiency of Up-Down variation over Down-Up variation is further validated by 
the lower mean AEC1 of 0.47 kWh (Up-Down) compared with 0.99 kWh (Down-Up). AEC3 
and AEC2 give us further insight into the building’s response. Up-Down power variation 
consumes more energy in the test window (see AEC3) but less energy in the settling window 
(see AEC2) than Down-Up power variation. Thus, overshoot after the test makes the Down-
Up power variation more inefficient than Up-Down power variation.   
 
Event Types 1 and 3, for which FM = 2 ˚F, have mean RTEs of 116% (Up-Down) and 246% 
(Down-Up), along with negative mean AEC1 values.  These results indicate a decrease in 
building energy consumption resulting from the provision of ancillary services. However, for 



both of these event types we have removed a substantial number of outliers since the building 
often appeared nonresponsive to FM = 2˚F tests. Therefore, more testing is needed to verify 
these efficiency metric values. 

Weill Hall  

Eighteen tests were conducted on Weill Hall. All tests used FM = 2 ˚F as there was a concern 
that the occupants would notice FM = 4 ˚F tests.  Figure 6 shows HVAC power consumption 
and room temperature for three representative events. Weill Hall was the only building with 
occupational sensors installed which impacted the building’s response to the tests.  

 
Figure 6. Three representative events at Weill Hall including HVAC power consumption (left axis) and room 

temperatures (right axis).  

Table 4 shows the results of two event types (a total of 9 events of each type were 
conducted). The mean RTE of Up-Down power variation (68%) was higher than the Down-
Up power variation (34%). The AEC1 metric also showed that the Up-Down power variation 
consumed less energy on average (1.98 kWh) than the Down-Up power variation (5.07 kWh) 
over its baseline. Again, Up-Down power variation consumes more energy in the test window 
(see AEC3) but less in the settling window (see AEC2) than Down-Up power variation.  

Table 4. Efficiency Metrics for Weill Hall 

 

 

Rackham Building  

A total of 32 tests were conducted on the Rackham Building. Figure 7 shows HVAC power 
consumption and room temperature for three representative events. Table 5 gives the 
efficiency metrics by event type. Overall, we conducted 9 events (of full magnitude 2˚F) and 
7 events (of full magnitude 4˚F) for each polarity in the building.  

Event Type 1 2 
Power Polarity Up-Down Down-Up 
Full Magnitude (FM) 2˚F 2˚F 
n, # of non-outliers (outliers) 6 (3) 6 (3) 
RTE Mean 0.68 (0.43) 0.34 (0.16) 
AEC1 
(kWh) 

Mean (σ) 1.98 (2.28) 5.07 (2.28) 
Bias ±95% CI 1.1±2.28 1.1±2.28 

AEC2 (kWh): Mean (σ) 0.04 (1.90) 3.33 (1.48) 
AEC3 (kWh): Mean (σ) 1.95 (2.26) 1.79 (1.60) 



 
Figure 7. Three representative events at the Rackham Building including HVAC power consumption (left axis) 

and room temperatures (right axis).	

 
Table 5. Efficiency metrics for the Rackham Building  

Event Type 1 2 3 4 
Power Polarity  Up-Down Up-Down Down-Up Down-Up 
Full Magnitude (FM) 2˚F 4˚F 2˚F 4˚F 
n, # of non-outliers (outliers) 2 (7) 4 (3)  2 (7)  5 (2)  
RTE Mean (σ) 0.99 (N/A) 0.81 (N/A) 1.21 (N/A) 0.49 (0.41) 
AEC1 
(kWh) 

Mean (σ) 0.85 (N/A) 0.77 (N/A) -0.30 (N/A) 2.12 (1.60) 
Bias ± 95% CI 0.21±0.89 0.21±0.63 0.21±0.89 0.21±0.56 

AEC2 (kWh): Mean (σ) 0.33 (N/A) -0.91 (N/A) -0.16 (N/A) 1.11 (0.51) 
AEC3 (kWh): Mean (σ) 0.53 (N/A) 1.67 (N/A) -0.14 (N/A) 1.01 (1.23) 
 
Comparing Event Types 2 and 4, Up-Down power variation averaged an RTE of 81% and 
Down-Up power variation averaged an RTE of 49%. The mean AEC1, AEC2, and AEC3 
values follow the same trends as seen in the other buildings. Similar to the BBB Building, we 
have removed a substantial number of outliers corresponding to Event Types 1 and 3 since 
the building often appeared nonresponsive to FM = 2˚F tests. Again, more testing is needed 
to verify these efficiency metric values. 

How do the buildings compare?  

Figures 8 and 9 summarize the efficiency metrics across the three buildings (though only the 
FM = 4˚F tests are shown for BBB and Rackham). Figure 8 shows boxplots of the RTEs 
along with the mean RTEs for Up-Down and Down-Up events for each building, and the 
percentage decrease in mean RTE. Similarly, Figure 9 shows boxplots of the AEC1 along 
with the mean AEC1, and the percentage increase in mean AEC1. In all buildings the mean 
RTE of Up-Down power variation is higher than the mean RTE of Down-Up power variation 
(Figure 8), and the opposite is true for the mean AEC1 (Figure 9). Hence, the polarity of the 
ancillary service event plays a significant role in the building response efficiency. This is 
consistent with the results found in Beil et al. (2015).  

We believe a potential reason that the Down-Up power variation is more inefficient is that the 
buildings over-respond to the setpoint changes in the middle of the test window. As the 
temperature setpoints are bought down to increase fan power consumption, the fans sharply 



increase their power consumption since the rooms have become warmer due to an increase in 
temperature setpoints during the previous half of the test.  

Figure 10 shows the sensitivity of the mean RTE and AEC1 in each building and each polarity 
to the outlier tolerances. Specifically, we calculate the metrics using 1) all tests, 2) only tests 
that satisfy the two conditions given earlier and using the default tolerances, 3) only tests that 
satisfy the two conditions and using a 10% increase in tolerance, and 4) only tests that satisfy 
the two conditions and using a 10% decrease in tolerance. 

 
Figure 8. RTE statistics for all buildings. 

 

 
Figure 9. AEC1 statistics for all buildings.  



We find that while the tolerances do affect the results, the trends remain the same with the 
exception of Rackham. At Rackham, without removing outliers (red line), the Down-Up 
power variation is more efficient that the Up-Down power variation. This trend reversal is 
due to a single spurious test. When inspecting the time series data associated with this event 
we found that the building did not clearly respond to the setpoint changes and Ein was very 
small, giving a “divide by small number” problem. 

 

Figure 10. Evaluating sensitivity of results to change in tolerance. 

Conclusion and Future Work  

We conducted a total of 122 tests on three campus buildings at the University of Michigan in 
order to quantify the efficiency of building responses to ancillary service events. Our key 
findings are as follows. 

• The vast thermal inertia of buildings can be used to provide ancillary services by 
varying HVAC power consumption on a short time scale with minimal occupant 
discomfort. Larger temperature setpoint changes cause a larger variation in fan power 
consumption.  

• Up-Down power variations are more efficient than Down-Up power variations, which 
is consistent with the result of Beil et al. (2015). Thus, the polarity of the ancillary 
service event has a significant impact on the building response efficiency.  

• The experimental results obtained in this paper and in Beil et al. (2015) are 
inconsistent with the modelling results of Lin et al. (2017). Better models are needed 
to capture the energy impacts of ancillary service provision by buildings. 

• The AEC is a more robust metric than the RTE since it does not have “divide by small 
number” problems. However, it is hard to compare AECs across buildings.   

The factors driving the inefficiency of building responses are still largely unknown. Our 
future work will develop better models that capture the building behaviour that we see in the 
experiments. Furthermore, we would like to conduct additional experiments, for example, 
solely Up-Power variation and solely Down-Power variation, which would help isolate the 



behaviour associated with each of the two phases of the symmetric Up-Down and Down-Up 
tests. We would also like to explore successive ancillary service tests, as explored in a recent 
simulation study (Raman and Barooah, 2017) that used a physics-based model to show the 
convergence of the RTE to unity as a building is subjected to more and more successive tests.  	
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