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ABSTRACT 

The thermal inertia of commercial buildings allows us to shift their power consumption 

on minutely to hourly timescales to provide grid services while maintaining occupant comfort. 

Our experimental research has shown that buildings providing these services may consume more 

energy than they would under normal operation. In this paper, we explore this phenomenon by 

analyzing results from over one thousand experiments on eight campus buildings in Michigan 

and North Carolina. This builds upon our prior work that drew preliminary conclusions based on 

experimental results from three buildings in Michigan (presented at ACEEE 2018). In our 

experiments, we manipulate each building’s thermostat setpoints using pre-defined setpoint 

signals that cause the building to shift its power consumption with respect to its baseline. 

Expanding on our prior research using square-symmetric setpoint signals, we implemented a 

variety of new signals (e.g., ramping the setpoints) that enable an enhanced understanding of the 

physics and control response of HVAC systems. We analyze the fan power response and 

investigate impacts on the building chilled water and terminal reheat systems, allowing us to 

conduct a more holistic energy efficiency impact assessment. We also quantify the impact of 

load shifting on the cooling service provided to the building thermal zones. Our paper provides 

new insights that help inform the design of building response strategies that mitigate 

inefficiency. This analysis also underpins the experimental design for the next phase of testing in 

Summer-Fall 2020.  

Introduction 

The electricity grid needs flexible resources that can maintain supply-demand balance 

across a wide range of time scales. As the penetration of renewable resources increases, 

achieving this balance will require increasing flexibility on the grid. This need is exacerbated as 

fossil-fuel based resources that previously provided such flexibility (e.g., existing thermal 

generators with high rotational inertia and load-following governor systems) are increasingly 

displaced. Efficiently leveraging new sources of flexibility to ensure reliable and economic 

power grid operation is an important step in achieving deep decarbonization of our energy 

system (Davis et al. 2018). In recent years, considerable research effort has been devoted to 

investigating the potential of commercial building heating, ventilation, and air conditioning 

(HVAC) systems for providing a variety of grid services (e.g., Watson et al. 2006; Zhao et al. 

2013; Hao et al. 2014 and Cai et al. 2018). A recent report estimated the potential for 200 GW of 



cost-effective flexible load services that could be utilized on the U.S. grid by 2030 (Brattle 

Group, 2019). 

 

Demand response has often been restricted to load shedding events, reducing the system 

load in times when the grid is operating near peak (typically on hot summer days). However, 

research has shown that demand response has tremendous potential for ancillary services like 

frequency regulation (e.g., Lin et al. 2015) and, as our research (and other prior works like Beil 

et al. 2015) has shown, for load shifting on minutely to hourly timescales. The timescales of the 

experiments presented in this paper are consistent with those of real-time energy markets, which 

occur every 5 to 15 minutes.  The use of commercial buildings for a wide range of grid services 

across multiple timescales will require a much more complete understanding of building impacts. 

Viable control strategies should take into account the possibility of HVAC systems consuming 

more energy than they would under normal operation.  This is illustrated by our previous work, 

presented at the 2018 ACEEE summer study (Keskar et al. 2018; Keskar et al. 2019), which 

showed that HVAC fans consume more energy when providing load shifting than under normal 

operation. The efficiency of building response and the additional energy consumption depended 

on the polarity of the setpoint signal given to the building thermostats (i.e., whether the setpoint 

temperature was first increased or decreased). These results were consistent with prior 

experimental work conducted at Los Alamos National Laboratory (Beil et al. 2015) but 

inconsistent with previous modeling work (Lin et al. 2017). One of the recurring themes in this 

research domain has been the apparent mismatch between the experimental and modeling work 

when it comes to assessing the efficiency of building response. To gather an enhanced 

understanding of the physics and control dynamics of building response, we have conducted a 

wider-scale experimental investigation into this phenomenon. 

 

Our new work, reported here, broadens the scope of our research, while providing further 

insights into some of our prior assumptions. In 2019, we conducted over one thousand 

experiments on twenty campus buildings at North Carolina State University (NCSU) and the 

University of Michigan (UM). The supply and return fans in the buildings were instrumented. 

We then manipulated the building temperature setpoints using pre-defined signals (square, ramp, 

and successive, as shown in Figure 1) that changed the fan power consumption of the building 

with respect to its baseline. We also collected building automation system (BAS) data that 

allowed us to quantify the response of the chilled water and terminal reheat systems. This data 

provided new insights into the response of other grid-connected HVAC subcomponents when we 

use fans for shifting electricity demand on minutely to hourly timescales. We previously 

assumed the change in room temperatures would be negligible due to the vast thermal inertia of 

commercial buildings. This assumption is revisited by quantifying the effective cooling service 

(ECS) provided to a building due to load shifting. This is achieved by collecting a subset of room 

temperatures across different building thermal zones using the BAS. The results presented for the 

fan power, chiller, terminal reheat, and zone temperature response provide a holistic assessment 

of the impact that load shifting can have on commercial building HVAC systems.  

 

In this paper, we present results from eight campus buildings in order to conduct a 

comprehensive assessment of the impact on the energy efficiency of response of commercial 

HVAC systems when used for load shifting. We first describe the experimental setup by 

providing a detailed description of the setpoints signals implemented, description of the 



buildings, instrumentation, data collection, and execution of experiments through the BAS. Then, 

we describe the metrics we used to quantify the efficiency of fan, chiller, terminal reheat 

response, as well as the method to quantify the effective cooling service provided to the building 

thermal zones. In the results section, we provide a detailed discussion of two buildings and 

summarize the results of the other buildings. We conclude by providing our key findings and 

highlight the future direction of our research. 

Experiments conducted 

 

Figure 1. Thermostat setpoint shapes implemented on the eight buildings and the resulting aggregate fan power 

response relative to a baseline. An Up (Down) setpoint change leads to a Down (Up) fan power consumption 

change. 

As shown in Figure 1, we analyze three types of setpoint signals given to the buildings. 

The setpoints are broadcast to the building thermostats within testing window 𝑡𝑤. We also 

analyze the response of the building after the test, over a pre-defined settling window 𝑡𝑠 during 

which the building settles back to baseline (unperturbed setpoint) operation. The total window of 

analysis is the sum of the testing and settling windows (𝑡𝑡= 𝑡𝑤+ 𝑡𝑠). Our previous work found 

that the polarity of signals given to the building had a significant impact on the efficiency of 

building response. Specifically, building response was more efficient when the power consumed 

by the building was increased and then decreased with respect to its baseline (Up-Down power) 

than when the power consumption was first decreased then increased (Down-Up power). The 

efficiency of building response was quantified by the round-trip efficiency (RTE, a standard 

metric to quantify efficiency of energy storage) and the additional energy consumption (AEC, 

the additional kWh consumed by the building over its baseline). However, in this paper, we use 

only the AEC since our previous work found that it is more robust than the RTE for quantifying 

the efficiency of building response. To allow for direct comparison with our previous results 

(Keskar et al. 2019), we conducted 1-hour square events (Up-Down and Down-Up) at each of 

the eight buildings, as shown in Figure 1 (left). We also designed two new tests to investigate 

new hypotheses that enable an enhanced understanding of the response of the HVAC system.  

 

The first new test, as shown in Figure 1 (middle) was a ramped setpoint test to investigate 

if ramping the setpoint signal could improve the efficiency of fan power response.  In our 

previous work, one of the hypotheses we had proposed for the inefficiency of the Down-Up tests 

was the large setpoint step up applied in the middle of the test which causes the aggregate fan 

power consumption to rebound over its baseline.  



The second new test, as shown in Figure 1 (right), were successive tests which were 

inspired by the modeling work conducted at the University of Florida (Raman and Barooah 

2018a, and the follow-up work Raman and Barooah 2018b). Their analytical and simulation 

work found that the round-trip efficiency converges to unity as a building is subjected to 

successive load shifting. In other words, the building response is 100% efficient when it is 

repeatedly perturbed to provide load shifting grid services. Their model suggested that the indoor 

temperature deviation is not zero mean (building gets slightly warmer). In their follow-up work 

(Raman and Barooah 2018b), the authors constrained the average temperature deviation in their 

model to zero which caused the RTE to converge to values less than one since there was 

additional energy consumed to maintain the temperature constraint (i.e., not allowing the 

warming to occur). To the best of our knowledge, no prior experimental work has investigated 

the impact on building efficiency caused by successive load shifting.  

Experimental setup 

Building selection and characterization 

Table 1. Building parameters 

Building 

name 

Eng. 

Bldg. II 

Eng. 

Bldg. III 

Park 

Shops 

Sullivan 

Shops III 

Bob & Betty 

Beyster Bldg. 

Thayer 

Bldg. 

North Quad. 

Complex  

Dana 

Bldg. 

Location NC NC NC NC MI MI MI MI 

Year built 2005 2010 1914 2011 2005 2006 2010 1901 

Building type Lab/office Lab/office Office Office 
Classroom 

/office 
Office 

Classroom 

/office 

Classroom

/office 

Area (ft2) 202,400 175,000 50,000 13,500 104,100 59,800 288,400 117,100 

Annual 
energy 

consumption 

(MWh) 

4,284 4,649 761 Unavail. 3,160 508 3,979 1,595 

HVAC system 

type 

Chilled 
water 

based 

Chilled 
water 

based 

Chilled 
water 

based 

Direct 

Expansion 

Chilled  
water  

based 

Chilled  
water  

based 

Chilled  
water  

based 

Chilled 
water 

based 

Chilled water 
source 

Central 
plant 

Central 
plant 

Central 
plant 

N/A 
Central  
plant  

Central  
plant 

Central  
plant 

Central 
plant  

#Setpoints 

controlled 
265 335 85 15 193 94 124 162 

#AHUs 6 10 2 1 3 2 16 3 

#Fans 

instrumented 

(#supply fans) 

16(10) 14(7) 4(2) 1(1) 7(3) 2(1) 4(2) 3(2) 

2019 testing 

period 

April-

October 

April-

October 

May- 

October 

June-

October 

June-

September 

August-

September 

July-

September 

July-

September 

Testing times 
9-11 am,     

1-3 pm 

9-11 am,     

1-3 pm 

9-11 am, 

1-3 pm 

9-11 am, 

1-3 pm 

9-11 am,  

1-3 pm 

9-11 am,  

1-3 pm 

9-11 am,  

1-3 pm 

9-11 am, 

1-3 pm 

#Total tests 

conducted 
183 155 131 99 52 32 32 40 



The test buildings have multizone single duct variable air volume (VAV) systems with 

terminal reheat, with the exception of one building that has a direct expansion system (the 

refrigerant cools the air directly as opposed to in chilled water systems where the air is cooled 

using air to water heat exchangers). The chilled water is supplied either by a central campus 

chilled water loop or by a standalone chiller. The buildings were selected based on having a 

sufficient number of controllable setpoints available on the BAS, in addition to ensuring that we 

cover a wide variety of building sizes, types, HVAC system layouts, and number of fans, as 

shown in Table 1. 

 

Instrumentation and BAS data collection 

 

Figure 2. Current sensors installed on a single phase of a fan at Engineering Building-2 (left) and on a chiller at 

Toxicology Building (right) at NCSU. 

We submetered 55 subcomponents (54 fans and 1 chiller compressor) at seven NCSU 

buildings and 90 subcomponents (89 fans and 1 chiller pump) across 13 UM buildings (Figure 

2). To instrument the fans and chiller equipment, we installed current sensors (Onset CTV-D 20-

200A) on a single phase of the supply fan and return fans belonging to the air handling units 

(AHUs).  The current probes were attached to data loggers (Onset- HOBO 4 Channel U120-006). 

Using constant voltage and power factor assumptions, we estimated per-minute three-phase fan 

power consumption1.  

 

We also collected numerous building trends through the BAS. The following points were 

collected from each building when available: subset of zone temperatures and temperature 

setpoints, VAV damper positions, reheat valve positions, chilled water flow, chilled water supply 

temperature, chilled water return temperature, building steam flow, outside air temperature, 

outside air humidity, and electrical load data. Due to the large number of data points, some of 

these trends were only available at a lower temporal resolution (e.g., every five minutes). In this 

paper, we present the results of eight buildings, which offer the highest number of tests and 

most-complete datasets from the BAS. 

 
1Ideally, we would have installed three-phase power meters on each of the fan VFDs. However, this was impractical 

due to the large number of fans and associated high cost. We would expect both the voltage and the power factor to 

vary throughout the day. The extent of the variation and impact on our results is a subject of current research. 



Shifting building demand using Global Thermostat Reset 

To shift the electrical load of the building, we utilize the global thermostat reset (GTR) 

methodology in which we offset the VAV temperature setpoints through the BAS. The change in 

VAV setpoints causes the VAVs to open/close the dampers to control the amount of air that is 

entering a thermal zone in order to maintain the newly commanded setpoint. (In our experiments, 

we control a majority of the VAV setpoints, only omitting building zones with sensitive loads 

such as lab equipment and hospital operating rooms, which require tight temperature control.) 

Through these actions, the increase/decrease in static duct pressure causes the fans to change 

their power consumption. Goddard et al. 2014 provides a comprehensive overview of other 

control strategies that can be used to trigger a change in commercial HVAC power consumption 

and an insightful discussion on the relative advantages offered by GTR. 

 

At UM, the tests were coded into the BAS on the field panel of each individual building 

to control the VAV setpoints of that building. At NCSU, a Python program running on a cloud 

hosted virtual server was used to change the VAV temperature setpoints in all the buildings (i.e., 

each building receives the same change in setpoint command). It is not required for all buildings 

to receive the same setpoint command (but to ensure sufficient repeatability of tests we gave the 

same setpoint command to all buildings). A significant advantage provided by the approach at 

NCSU is scalability, as adding buildings is as simple as including the VAV network numbers in 

the central Python program. The program relies on an open-source library called Bacpypes 

(Bender, 2019), which enables the Python code to communicate using the BACnet/IP protocol (a 

communication protocol developed by ASHRAE for BASs). A disadvantage of this method, 

especially on a campus network, is that significant coordination with information technology 

organizations is required to ensure network firewall settings do not block the BACnet traffic 

from reaching the buildings. Another disadvantage of the approach at NCSU is the slower 

communication rate capability of the field devices compared to the virtual server that 

communicates the setpoint signals to them. This difference can overload field controllers with 

BACnet traffic and result in decreased controller performance. To overcome this challenge, we 

implemented a parameter in the Python program which limits the rate of communication to field 

devices. This is an important consideration when using this methodology for providing grid 

services in other buildings since different field controllers have different rates of allowable 

traffic.  

Test parameters 

Section A.1 of an Electronic Appendix (link provided at the end of the paper) contains a 

table that summarizes the tests we have analyzed in this paper. The table shows the full 

magnitude (FM, see Fig. 1) of the setpoint change and the duration of the testing and settling 

windows for each type of test: square, ramped, and successive. The ramped signals were only 

implemented at NCSU.  We used two ramp rates for the tests: slow ramping which initially 

ramps the setpoint over 1/6 of the duration of 𝑡𝑤 and a fast ramp that ramps the setpoint over 

1/12 of the duration of 𝑡𝑤. To investigate the overall impact of ramping the setpoints on 

efficiency, we present the results of both the slow and fast ramped tests together (𝑡𝑤 and FM 

were kept consistent across both types of tests). Different FMs were used at UM and NCSU (4˚F 

vs. 6˚F) since initial experiments found different setpoint perturbations were needed to elicit a 

response clearly visible in the data. 



Evaluating response of Fan, Chiller, Terminal Reheat, and Cooling Service  

We have observed that sometimes the building HVAC system does not respond as 

expected. Therefore, we developed a method to remove outliers. The experiments were designed 

to produce a fan power response that is approximately symmetric during the testing window and 

visually observable from the data. Therefore, we removed tests that fail to meet symmetry 

(insufficient response in either the Up or Down direction) and magnitude thresholds (insufficient 

response with respect to the estimated baseline) using the outlier criteria listed in Keskar et al. 

2019. The tolerance for symmetry, denoted ε𝑠 , always takes the value 20% (e.g., if response is 

higher above the baseline, the kWh response below the baseline should be at least 20% of the 

response above the baseline in 𝑡𝑤), whereas the magnitude tolerance ε𝑚 is assigned per building 

by inspecting the time-series data. Values for ε𝑚  are provided in Section A.2 of the Electronic 

Appendix. In the future, we will also incorporate the change in mean damper positions into the 

outlier criteria since it is the opening/closing of dampers that causes the change in static duct 

pressure, which consequently causes the change in fan power consumption.  

 

Chilled water systems are often the biggest drivers of energy consumption in commercial 

HVAC systems. Initially, we expected the chilled water system to be largely unresponsive due to 

its high time constant (Goddard et al. 2014). However, our previous work (Keskar et al. 2019) 

found the chilled water system to have a non-negligible response to the tests, though that result 

was based on data from one building. In this work, we conduct a more in-depth analysis using 

data from six buildings. Depending on the data available in the BAS, we use either the chilled 

water flow rate or the instantaneous tonnage of cooling used by the building. We determine the 

cooling load tonnage of a building by multiplying the difference between chilled water return 

temperature and supply temperature, the chilled water flow rate, and a constant that accounts for 

specific heat capacity (see Section A.3 of the Electronic Appendix). The required data is 

collected through the BAS at 1-minute or 5-minute intervals.  

 

Terminal reheat systems have two main functions. One is to help control the humidity 

level in the thermal zone by reheating the air supplied to the zones and the other is to help 

maintain occupant comfort when the damper control loops are unable to maintain the desired 

zone setpoints. We investigated the impact of the experiments on these systems by collecting a 

subset of reheat valve position data. To ensure these data act as a comprehensive proxy for the 

impact on the entire reheat loop and subsequent analysis, we selected reheat valve data across 

rooms distributed throughout the buildings. We also collected a majority of room temperature 

and damper position data from the corresponding VAV boxes. The buildings that we investigated 

provided terminal reheat using hot water heat exchangers that were supplied from either a 

standalone boiler or a central campus steam loop. In prior experimental work (Goddard et al. 

2014), the authors disabled the terminal reheat to ensure it would not engage. We were not able 

to disengage the reheat in our experiments. 

 

Efficiency of fan power response 

We use the AEC metric as defined in Keskar et al. 2019 (i.e., the energy consumed by the 

fan(s) above its baseline minus the energy consumed by the building below its baseline) to 

compute the fan power efficiency in the testing window 𝑡𝑤, settling window 𝑡𝑠, and total window 



𝑡𝑡.  Since the tests are designed to achieve energy neutral load shifting, we would expect the 

AEC in 𝑡𝑤 to be 0 kWh. However, due to non-symmetrical response in the Up and Down 

directions the metric takes a non-zero value. To compute the AEC, we fit a linear baseline using 

least squares to fit data 5 min before the beginning of 𝑡𝑤 and 5 min after the end of 𝑡𝑠. Keskar et 

al. 2019 show the performance of this method to estimate the baseline by computing the error of 

the technique when used on baseline days. Lei et al. 2019 provide a comprehensive overview of 

a variety of different fan power baseline estimation methods. The two papers show that the linear 

baseline using least squares performs well in estimating baseline fan power.  

 

Efficiency of chiller response 

We compute the additional chiller consumption (ACC) with respect to the baseline to 

quantify the efficiency of chiller response. The building’s baseline cooling load is estimated by a 

linear regression model similar to Baseline Method-2 in Mathieu et al. 2010 used for whole 

building electric load prediction. Note that both whole building electric load and chiller cooling 

load are strongly correlated with outside air temperature. Here, we use 5-min interval cooling 

load data from the building chilled water system. Independent variables in the regression model 

include time of day, average cooling load from 7:00 am to 9:00 am, and the outside air 

temperature. Specifically, the nonlinear dependence of the cooling load on the temperature is 

captured by a piecewise linear approximation with six segments. The regression model is trained 

using data from the same building on days without tests, referred to as baseline days. For some 

buildings with insufficient baseline day data, we also include data from test days, but outside the 

experiment windows.  

 

In predicting or forecasting the cooling load, calibration methods are commonly adopted 

for error reduction. For example, after a regression model produces the prediction of next time 

step, one can calibrate it by subtracting from it the regression model’s average error in the 

previous two hours (Fan and Ding 2019). We adopt a similar calibration method here. In the total 

window 𝑡𝑡, the regression model’s errors are unknown as the measured cooling load deviates 

from the baseline due to our tests. Still, before and after the total window, the regression model’s 

errors are known and can be obtained by comparing the model prediction to the cooling load 

measurement, which is the true baseline. Let 𝑡 be the index for time steps within the total 

window 𝑡𝑡, and 𝑡±1.5hrs be the window covering 1.5 hours before and 1.5 hours after time 𝑡. Note 

that 𝑡±1.5hrs  is different for each time 𝑡. Let 𝑡±1.5hrs - 𝑡𝑡 represent the window containing time 

steps within 𝑡±1.5hrs  but outside  𝑡𝑡. In this work, we calibrate the regression model’s baseline 

prediction at each time 𝑡 by subtracting from it the average of the model’s known errors within 

the window 𝑡±1.5hrs - 𝑡𝑡. In the Electronic Appendix Section A.4, we quantify the accuracy and 

bias of our baseline method. We do this by computing the ACC at event times on baseline days 

(which should be zero if the baseline method is perfectly accurate) to obtain the average baseline 

error (bias) and standard deviation (accuracy). We also use this method to quantify the baseline 

error for the terminal reheat and effective cooling service.  

 



Efficiency of terminal reheat response 

To compute the terminal reheat power consumption, we would ideally collect data on the 

supply and return water temperature and flow rate, as well as the amount of air (in cfm) delivered 

by the VAV to the room. However, this data was not available from the BAS. Instead, we offer 

insights into the additional reheat consumption (ARC) by computing the change in mean reheat 

valve position (average of all collected reheat valve positions) in the testing window 𝑡𝑤 and 

settling window 𝑡𝑠. The baseline method used is similar to the fan power method by fitting a 

linear least squares baseline using the mean valve position 5 min before the test and 5 min after 

the settling window. The ARC metric thus gives us a proxy for the impact on the terminal reheat 

systems and is quantified in units of %-hours. We present the error associated with this method 

in Section A.4 of the Electronic Appendix.  

Effective cooling service provided 

Changes to the level of cooling service provided to the building is of fundamental 

importance when investigating the efficiency of HVAC subcomponent response, as well as 

understanding the physics behind the inefficiency seen in our prior work for two reasons. One, it 

helps us understand the change in cooling provided across different types of events, enabling us 

to understand whether certain types of tests can lead to more or less cooling provided to the 

thermal zones. Two, understanding the change in cooling service provided helps us investigate 

the relation between the quality of service (cooling) and the cost of service (additional energy 

consumed by subcomponents). We use the average of a subset of zone temperature trends of the 

building to quantify the effective cooling service (ECS) provided to the thermal zones. This is 

calculated based on the deviation in temperature with respect to the baseline. Cooling setpoints 

in campus buildings were held at 72˚F or other values and thus room temperature deviations 

were minimal during baseline operation. We compute the baseline by fitting a linear least 

squares baseline using data 5 min before 𝑡𝑤 and 5 min after 𝑡𝑠. The ECS is then quantified by 

subtracting the mean room temperature from its baseline and is computed in deg-hours units. A 

higher value of ECS indicates a larger temperature deviation above baseline, and consequent 

warming of thermal zones. Again, we present the error associated with estimating the baseline 

for the mean room temperature in Section A.4 of the Electronic Appendix.  

Results 

In this section, we detail the results from the experiments that were conducted across the 

eight campus buildings. Figure 3 shows the time-series plots for the three types of signals at 

Engineering Building-2. The figure shows how the different subcomponents of commercial 

HVAC systems react when we shift the HVAC fan power load. We see the change in setpoints 

(row one in Figure 3) causing the dampers (row five) to open/close to meet the new setpoint, 

which causes the aggregate fan power consumption (row 2) to decrease/increase to maintain the 

desired static duct pressure (for this building the values varied 0.8-1.2 in. wc depending on the 

AHU). The change in zone temperature (row one) and reheat valve positions (row four) show 

that their shifts with respect to their estimated baseline follow the polarity of the setpoint signal. 

We also see the response of the chilled water system (row 3) to the three different signals.  

            



 

Figure 3: Representative results from Engineering Building-II for square, ramped, and successive events. The five 

rows (top to bottom) show the setpoint signals broadcasted (and corresponding changes in zone temperature), 

aggregate fan power consumption, chiller flow from campus chiller loop, average reheat valve positions, and 

average VAV damper positions, respectively. The grey dotted line shows the estimated baselines for the different 

subcomponents.  

Below we present detailed results and analysis from two buildings, one at NCSU and the 

other at UM. Table 2 provides a summary of the different efficiency metrics computed for all the 

buildings.  

Engineering Building-II 

A total of 183 events were conducted at Engineering Building-II. As row 1 of Figure 4 

(left) shows, the Down-Up square event lead to more fan power comsumption (higher AEC) on 

average in the total window 𝑡𝑡 than the Up-Down square event, which is consistent with our prior 

experimental results. We also notice a corresponding increase in the amount of additional chilled 

water (increase in ACC in 𝑡𝑡) as seen in row 3 of Figure 4 (left), which seems to indicate that the 

Down-Up square signal also draws more power from the chilled water system. We also find that 

an increase/decrease in ARC values from 𝑡𝑤 to 𝑡𝑠 for successive and ramped events leads to a 

corresponding increase/decrease in ECS provided to the thermal zones (row 2 and row 4 of 

Figure 4). The non-zero ARC values in row 2 of Figure 4 are significant since we found the 



reheat to respond (as expected) with the the same polarity as the setpoint signal unlike the fans 

which respond with the opposite polarity. This indicates that system compensates for the change 

in cooling by using additional reheat power which is potentially one of the drivers behind the 

change in effective cooling service provided to the thermal zones. The median ECS values across 

all test types, as seen in row 4 of Figure 4 (~ 0°F-hours), indicate that the temperature deviation 

casued by the load shifting is minimal when we shift the fan power load. We find that ramping 

the setpoints significantly reduces the mean ACC compared to square signals, as seen in row 3 

(middle) in Figure 4. We also find a decrease in AEC for Down-Up signals indicating an 

improvement in efficiency of response (row 1 (middle) in Figure 4). However, compared to 

square signals, ramped signals generally result in smaller reponses of HVAC subcomponents. 

The relationship among setpoint ramp rates, response maganitudes, and energy efficiency needs 

further investigation in future work. For the successive events, we find an overall increase in fan 

and chiller consumption (row 1 (right) and row 3 (right) in Figure 4).   
 

   
 

Figure 4: Efficiency metrics for fan, reheat, chiller and effective cooling service for the three different types of 

signals for Engineering Building-2. The dots show the respective metrics for one event. UD: Up-Down, DU:Down-
Up, RUD: Ramped Up-Down, RDU: Ramped Down-Up, UDUD: Up-Down-Up-Down, and DUDU: Down-Up-

DownUp. The edges of the boxplots showing the metrics for 𝑡𝑡 have been darkened.  

Thayer Building  

A total of 32 events were conducted at Thayer Building. We find that the mean AEC of 

the square Up-Down is less than the mean AEC of Down-Up as seen in row 1 (left) of Figure 5, 

indicating a more efficient fan response. We also find the ACC for the square Down-Up event to 



consequently be higher than the Up-Down square events, as seen in row 3 (left) of Figure 5. The 

𝑡𝑤 for the square and successive events was the same in this building, unlike Engineering 

Building-II where 𝑡𝑤 of the successive events was double of the square events. The AEC of the 

successive test decreases compared to the square tests as seen in row 1 (right) of Figure 5. 

However, we notice an increase in ACC compared to the square events as seen in row 3 of 

Figure 5, indicating a more inefficient chiller response. We also notice a minimal impact on ECS 

for both square and successive events as seen in row 4 of Figure 5.  

 

 

Figure 5: Efficiency metrics for fan, reheat, chiller and effective cooling service for square and successive signals 

for Thayer Building.  

Summary of results  

Table 2 presents a summary of the metrics computed for all eight buildings (we present 

the standard deviation associated with each metric in Section A.5 of the Electronic Appendix). 

For Engineering Building-III we see trends similar to Engineering Building-II. The Down-Up 

square tests have a higher mean AEC, and consequently a higher ACC value compared to the 

Up-Down square events. The AEC and ACC for the successive Up-Down-Up-Down test also 

increase compared to the Up-Down square and ramped test (the number of non-outliers for the 

Down-Up-Down-Up test was low).  For Sullivan Shops-III we see an improvement in efficiency 

for the successive tests (lower AEC) compared to the square and ramped tests. Overall, the low 

AEC values indicate a minimal impact on the efficiency of the fan power response. For the Bob 

& Betty Beyster, Thayer, and Dana buildings we see a higher mean AEC for Down-Up events 

compared to Up-Down events, which is consistent with our prior experimental results. We 

observe very low AEC values for the North Quadrangle Complex indicating a minimal impact on 

the efficiency of fan power response.  
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Table 2. Summary table of metrics for all buildings. Values shown are for total window 𝑡𝑡 

 
† SQ: Square; RA: Ramped; SU: Successive; UD: Up-Down; DU: Down-Up; UDUD: Up-Down-Up-Down; DUDU: Down-Up-Down-Up  

Building  Shape: 

Polarity
†
  

Fan Power:  

AEC, kWh  

Chiller Power: 

ACC, gallons 

or ton-hours 

Reheat Power: 

ARC, %-hours 

Temp.Deviation:  

ECS, °F-hours 

Engineering 

Building-II  

SQ: UD -4.3  930 4.6  -0.11  

SQ: DU 11  3100  10   0.16  

RA: UD 0.17  -74  14   0.03  

RA: DU 8.8  440  -6.7 -0.09  

SU: UDUD 13  6000  0.84  -0.35  

SU: DUDU 35  4300  1.6   0.52  

Engineering 

Building-III  

SQ: UD -0.66  900  -5.3   0.18  

SQ: DU 3.0  1200  1.1   0.28  

RA: UD -1.8  1000  7.5  0.25  

RA: DU 1.1 2300 13   0.25  

SU: UDUD 3.6  3400  1.4   0.51  

SU: DUDU 6.8  790  2.7   0.86  

Sullivan Shops- III  SQ: UD 0.18  N/A 12   0.42  

SQ: DU 0.17  N/A 6.2   0.71  

RA: UD -0.22  N/A 4.9   0.33  

RA: DU 0.11  N/A 4.1   0.48  

SU: UDUD -1.2  N/A 13   1.7  

SU: DUDU -0.27  N/A 8.2   1.4  

Park Shops 
 

  

SQ: UD -1.4  N/A 8.7  -0.22  

SQ: DU -0.52  N/A 7.3   0.16  

RA: UD N/A  N/A 1.0   0.00  

RA: DU -0.20  N/A 11  -0.14  

SU: UDUD -2.9  N/A 22   0.73  

SU: DUDU 0.52  N/A 15 -0.21  

Bob & Betty 

Beyster Building 

 

SQ: UD -1.7  34  -9.8  -0.04  

SQ: DU 2.2  110  -22   0.11  

SU: UDUD -7.2  -240  -22   0.01  

SU: DUDU 3.2  -94 -23 -0.11  

Thayer Building 

 

SQ: UD 0.72  -52  -7.3  -0.19  

SQ: DU 1.5  13  -1.4   0.02  

SU: UDUD -1.5  26  2.1  -0.05  

SU: DUDU 0.84  25  1.2  -0.10  

North Quadrangle 
Complex 

 

SQ: UD 0.94  320  4.8   0.05  

SQ: DU -0.52  -140  1.0   0.37  

SU: UDUD -1.4  -160  5.2  -0.14  

SU: DUDU -0.36  -210 3.7   0.31  

Dana Building 
 

SQ: UD 3.0  -16  4.7  -0.10  

SQ: DU 5.0  -16  -2.8  -0.30  

SU: UDUD -1.3  N/A N/A N/A 

SU: DUDU -0.44  N/A N/A N/A 



Conclusion  

We experimented on eight buildings at NCSU and UM to quantify the holistic impacts on the 

different subcomponents of a commercial building HVAC system when it responds to load 

shifting grid services. In our previous work, we found that the vast thermal inertia of commercial 

building HVAC systems can be used to shift its power on minutely to hourly timescales to 

provide additional flexibility on the grid. We had also found that the polarity of setpoint signal to 

the building can have a significant impact on the efficiency of building response although the 

magnitude of impact varied from building to building. The key findings in this work are as 

follows: 

• We found six out of eight of the buildings to respond consistently with our prior 

experimental results and find that the polarity of the setpoint signal has an impact on 

efficiency of fan power response.  

• We observed a notable impact on terminal reheat systems when the buildings are used for 

minutely to hourly load shifting.  

• Load shifting services can have a significant impact on the chiller power consumption.  

• We find load shifting services to have a minimal impact on the effective cooling service 

provided to the thermal zones.  

• Successive events cause a larger change in effective cooling service provided to the 

building. Changes to efficiency of fan power and chiller response varied from building to 

building and also depended on the testing window. More testing is needed to fully 

understand the impact of successive tests on efficiency of HVAC response.  

• Ramping of setpoints can be used to improve the efficiency of building response although 

more experiments and analysis are needed to full quantify the impact.  

 

This research is of significance to third party demand response aggregators for designing 

the optimal setpoint signals that will cause the building to closely follow the grid signal 

requested by the system operator. Our research offers additional insights into the additional 

building energy consumption that could be induced by participation, providing guidance on the 

necessary compensation for building operators.  As the electrification of building heating 

systems gains traction (shifting away from natural gas), the interplay of HVAC subcomponent 

dynamics becomes even more important since the impacts on reheat can impact the building’s 

ability to track the commanded power signal.  

 

In Summer-Fall of 2020, we will continue experimenting on the buildings on both 

campuses. Our future experiments will be informed by a combination of the analysis of the 

experiments presented in this paper and modeling the experiments using building software like 

EnergyPlus and the Buildings Library in Modelica. This two-pronged approach will not only 

help us design optimal setpoint signals that mitigate inefficiency but also directly address the 

mismatch in the modeling and experimental work that has been observed in prior work.  
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